
Automation with Ansible
Find the latest, print-friendly version of this presentation and tutorial materials at

https://christopherdemarco.com/ansible

Copyright © 2017 Christopher DeMarco.
All Rights Reserved.

The opinions and mistakes that follow are my own and do not represent my employer, Red Hat, USENIX, or anyone else.

All code samples were believed correct at runtime.
Your mileage may vary.

To my grandfather, who taught me how to write.
To my father, who taught me why. 2

This tutorial is interactive.
Please interrupt me!

Join us on Slack!
#m8-ansible
http://lisainvite.herokuapp.com/

Who has used Ansible before?

5

Lightweight
configuration
management

Stop managing your tools, start
using them.

Possibly pay Red Hat to help.

6

Agentless

Install and maintain the client.

Strange firewall ports?

Got SSH?

Got Python >= 2.4? (and maybe not
even that!)

7

Serverless

Admin SPOF / Yet Another Cluster

Install Ansible, pull configuration
codebase, & run locally.

No daemons or databases.

Laptop? Jenkins? On the node
itself?

8

Stateless

Ship bytecode to the nodes being
configured—load is in the targets,
not the controller.

Keep static host inventories in
source control.

Generate dynamic host inventories;
scripts simply output JSON.

9

Small DSL
YAML

Jinja2

Python

10

OTOH

SSH and Python are slow.

YAML is *too* easy.

Ansible is procedural, not
declarative.

Ansible’s DSL does not incorporate
a general-purpose programming
language.

11

There’s lots of
infrastructure
we can’t demo!

AWS

Google Compute Engine

OpenStack

Azure

Kubernetes

Cisco

F5

NetApp

Windows

. . . 12

Hello Docker

Playbooks
A play consists of tasks.

A groups of plays is called a
playbook.

Playbooks are structured as YAML
lists and dictionaries.

14

`hosts` and `tasks` are required
parameters of the play.

The `tasks` parameter contains a
list of modules. (`ping` and `apt`)

`state` is a parameter of a module.
`with_items` is a parameter of a
task. Do not confuse them!

15

Inventory

Use INI or YAML.

Or use a script for dynamic
inventory.

Set variables.

Set groups.

16

Run it! Ansible runs against all hosts in
parallel.

Show changes as they’re made,
and summarize overall results.

17

Re-run it! Ansible will only do what’s
necessary.

18

Now you try it . . .

19

Accessing your
lab workstation

Your paper tokens expire.

Do not break your instances.

Everything disappears afterwards.

Beware USENIX Code of Conduct.

Ansible and class materials are
installed.

API credentials expire after this
session, don’t try anything funny.

20

Code samples
are provided.

The first “hello docker” example is
in `~/class/1330_hello`.

Background `docker-compose up`,
use tmux/screen, or open a second
SSH session.

Once you’ve provisioned the
container, connect to it and play
around.

21

Docker 101
~/class/docker_101.md

22

YAML sucks.
~/class/yaml_sucks.yml

23

DON’T USE TABS IN
YAML!

http://fortunes.example
Let’s build it.

What do we
need to do?

Copy source.

Install requirements.

Set up app.

26

Does it work?
This docker-compose configuration
exposes tcp/80.

Test with curl.

27

Tag things to skip them.

28

Use the `ansible-playbook --tags=`
option to run only selected tags.

Use the `--skip-tags=` option to
exclude selected tags.

Separate multiple tags with a
comma [and no space].

Use the `ansible-playbook
--list-tasks` option to see what tags
are defined.

29

Variables

30

Variables can have default values.

Facts are variables discovered
automatically by Ansible.

Interpolate variables using Jinja2
syntax.

Use the `debug` module to print.

31

Set variables on the command line
with the `-e` argument.

Or define them in inventory.

Or use `include_vars` to load them
from a file.

32

Yeah, but Docker . . .
Let’s build it on a real host.

Managing /
accessing your
lab SSH host

Use `~/class/inventory.py` as your
Ansible inventory.

Username is `ubuntu`. Password
login is not permitted; use the SSH
key at `~/.ssh` .

Recreate alpha by running the
`~/recreate_alpha.sh` script; don’t
forget to remove stale keys from
`~/.ssh/known_hosts`.

34

alpha.<your-host>.foam.ninja

Docker vs. a
real host
How do we switch these on?

sudo

initscript/service

35

How do we
become a
different user?

`become`

`become_user`

Gotcha: `become` applies to the
play—not to the task list, or to
individual tasks.

36

How do we
branch on
platform type?

List the available facts: `ansible -m
setup -i <inventory> all`.

Use a task’s `when` parameter to
restrict its execution.

Gotcha: no Jinja braces in `when`!

37

Point your browser at
http://alpha.your-workstation.foam.ninja!

38

It sure is annoying to set `become_bool`
in inventory . . .

39

Yeah, but Debian . . .

You can set variables in a play.

`packages` is a dictionary. Index
using Python syntax.

The `package` module is
cross-platform.

41

Roles

Roles make
things modular.
Use them as much as possible!

Install and configure an application.

Apply common configuration.

Bundle assets and resources.

Share code.

43

Userland
Let’s build it.

What do we
need to do?

Provide my preferred username
and shell.

Authenticate using my GitHub
keypair.

Portably install the essentials.

Setup a convenience alias in
`~/.ssh/config`.

45

Use a role with the `include_role`
task.

46

Set `roles_path` in `ansible.cfg`.

`ansible-galaxy init <rolename>`.

Put tasks in `tasks/main.yml`. (Note
that this is a task list—like you’d
put in a play—not a playbook.)
Similarly for `handlers/main.yml`.

Put files/templates in their
respective directories, and you can
use them within the role without an
explicit path.

47

Set role
defaults.

Note that my defaults are probably
not what you want!

As a role author, it’s your
responsibility to set sane defaults.

48

Tasks return
data structures.

Provide status, stdout/stderr, etc.

`register` them, then use them like
variables.

Output them using `debug`.

49

Work locally. `delegate_to: localhost`

50

Let’s set a login password.
How can we store it securely?

51

Keep secrets in
`ansible-vault`.

Use the `import_vars` task to pull
vars into the current play.

`ansible-vault [create | edit | view]`

It’s encrypted, therefore safe to
store in version control.

`ansible-playbook --ask-vault-pass`

52

Gotcha!
sshd doesn’t permit password logins!

53

Handlers
Handlers `register` listeners.

Tasks can `notify` handlers.

Put a handler in a play, or in the
`handlers` list of a role.

54

Use third-party roles.

55

But are they
any good?

http://galaxy.ansible.com

`ansible-galaxy install user.role`

Gotcha! `ansible-galaxy` ignores
`ansible.cfg` and installs to
~/.ansible/roles` unless you set
`ANSIBLE_ROLES_PATH`.

Check them into source control?

Read them!

OK for prototyping . . . but you’ll
probably rewrite ‘em . . .

56

Keep things
organized.

Playbooks go in the top level.

Directories for inventory, roles,
variables, etc.

`roles_path`

Use version control!

Manage third-party modules!

57

Password-protect fortunes.
Let’s build it.

Templates

59

`template` is just another module.
Syntax is basically like `copy`.

Use the familiar variable
interpolation syntax—including
filters.

Wrap Python code with `{% %}`.

What do we
need to do?

Install Apache2.

Template the config.

Enable the config and modules,
restart `apache2`.

Set up htpasswd.

60

The Apache template is simple with
just a single variable expansion.

61

The htpasswd template shows an
inline Python code block, and a
filter.

62

Automate tmuxinator.

63

Because this is a bogus example,
we need to limit execution to
localhost.

The magic `ansible_env` variable is
a dictionary containing the env vars
of the host *on which the play was
run*.

The `delegate_to` parameter
specifies which host will run the
task.

64

`groups` is a variable like any other.

Note that interpolation braces are
not required within a Python block.

`hostvars` lets you reference an
arbitrary host’s variables!

65

Jevgr phfgbz svygref.

66

Write plugins in Python. Each
plugin implements a class whose
`filters` method returns a function
implementing the actual filter.

Put your Python in a `filter_plugins/`
directory adjacent to your playbook
or inside your role.

67

Documentation tour
Beware the bright light . . .

break
return at 1530

Grouping and limiting

Inventory groups can include other
groups.

Variables are inherited via group
membership.

71

Group membership can use
complex pattern syntax.

Limit what will be operated on with
the `-l` argument to
`ansible-playbook`, or in a play’s
`hosts` attribute.

Use the same pattern syntax on the
command line or in playbooks.

72

73

Dynamic inventory

74

Let’s build it.

Dynamic inventory: AWS

75

Scale

77

Use `strategy: free` to keep hosts
from waiting for each other.

78

Use the default strategy with the
`serial` directive to define batches
of hosts.

Melt your
laptop.

Set `forks` in `ansible.cfg` to scale
the number of remote connections.

79

Gotchas

Gotcha!
Install & setup

Install your OS’s package.

Scatter stuff all over your machine?

How stale is the version?

81

Instead, run
from a git repo.

https://github.com/ansible/ansible.git
But don’t commit it to your source
control!

Better yet, use a git submodule.

82

But you’ll need
a virtualenv.

http://docs.python-guide.org/en/latest/dev/virtualenvs/

Prefer OS packages for the various
virtualenv methods; don’t `pip install`
system-wide.

83

84

Gotcha!
SSH details

Use SSH-specific variables in
inventory and on the command line.

`host_key_checking`

`remote_port`

`remote_user`

`ssh_args`

`--extra-vars @aws.var`

85

Gotcha!
It won’t work?

Can’t auth? Can’t sudo?

Use `-vvvv` to watch the SSH
stream.

Is SSH doing what you expect?

86

Gotcha!
So many `.retry`!

`retry_files_enabled`

`retry_files_save_path`

87

Gotcha!
YAML parsing

88

Gotcha!
YAML parsing

89

Gotcha!
Interpolation

90

Gotcha!
Firewall

91

Gotcha!
No Python!

92

Gotcha!
Python3

:-\

93

Gotcha!
GitHub keys
Thou shalt not transport thine
public key.

94

Gotcha!
GitHub keys
(cont.)

95

Gotcha!
`sudo`
password?!

Add the `-K` flag to make Ansible
prompt for a sudo password.

Store the `ansible_become_pass`
variable in Vault.

96

Gotcha!
JSON

97

Gotcha!
Variable
precedence!

Don’t get into a position where you
need to know this! KISS!

Defaults are lowest priority: role
defaults and inventory vars.

Then facts, play vars, task vars.

Then include_vars.

Then set facts.

Then `-e` extra vars.

Basically, the narrowest scope
wins.

98

Q & A

Thank you.
Lab systems are being destroyed now.

Please fill out your surveys.

