
Deployment & 
Orchestration with

Terraform
Find the latest, print-friendly version of this presentation at 

https://christopherdemarco.com/terraform



Copyright © 2017 Christopher DeMarco. 
All Rights Reserved. 

The opinions and mistakes that follow are my own and do not represent my employer, Hashicorp, USENIX, or anyone else. 

All code samples were believed correct at runtime. 
Your mileage may vary.

To my grandfather, who taught me how to write.
To my father, who taught me why.



Who has used Terraform before?

3



Infrastructure 
Orchestration
* Not configuration management!

All your vendors’ web interfaces are 
different, and they all suck.

How do you document 
mouse-and-keyboard? Playback?! 

How can creating infrastructure 
become repeatable and reliable?

4



Infrastructure 
as Code
Because programming makes 
things easier!

Automation!

Scale / test / rollback

Version

Collaborate / audit

Have you tried turning it off & back 
on again?

Interface consistency

Make devs help!

5



“Infrastructure” is broad:

• AWS • Google Compute Engine

• Azure • Oracle Public Cloud

• 1&1 • Digital Ocean • Scaleway

• VMWare • Docker • Heroku

• OpenStack • Kubernetes

• Rancher • Nomad

• CloudFlare • Dyn • DDNS

• Chef • Cobbler • Rundeck

• MySQL • PostgreSQL • RabbitMQ

• DataDog • Grafana • New Relic

• Icinga2 • Librato • StatusCake

• Mailgun • OpsGenie • PagerDuty

6



Stop making 
tools
I don’t want a drill bit, 
I want a hole!

Stateful 

Intelligent dependency graphing

Lightweight DSL

Incremental

Golang makes it fast and portable.

Commercial support available

7



Stop talking
show us something already



Providers connect to a service that 
you’ll be managing.

Resources are the things you want 
to manage. They are declared with 
a type and an identifier.

A resource has arguments. They 
can be strings, lists, or maps.

Whitespace is flexible.

HCL can be converted to/from 
JSON.

9





tf init

Initialize the package directory. 
Copy in needed binaries. 

Initialize empty state if none exists.

`tf init` is idempotent.

Terraform will prompt you to run 
`terraform init` if it can’t find what it 
needs.

11



12



tf plan

Interrogate the provider[s].

Compare with local state.

Calculate dependency graph.

Print what will be done.

The plan is not saved (unless 
expressly requested).

13



14



tf apply
Plan.

Apply the dependency graph.

Update local state.

15



16



17



Let’s change 
something.

18



19



20



What if it’s a 
destructive 
change?

21



22



23



What if we 
remove the 
resource?

24



25



26



tf destroy

Teardown *all* resources.

Prompt for confirmation (unless 
`-force`).

There is no undo!

Calculate dependency graph so 
deletion is never* blocked.

27



28



In a demo, 
no-one can see 
your creds.

Use the provider’s default setup? 
(e.g. `~/.aws`)

Use env vars?

Set expressly?

Read a file?

29



Let’s build a simple webserver.

30



Terraform will load and evaluate 
everything in the current directory 
named like `*.tf` .

Configuration is declarative, order 
does not matter. 

Dependencies will be discovered 
and graphed.

31



Dependency graphing means that 
order does not matter!

Once a resource is instantiated, it 
exports attributes. Dereference 
them like `${type.name.attribute}` .

Outputs will become very useful 
later on. 

32



Dependencies can span files . . . 
this can become difficult to 
manage. Use common sense.

`name` attribute is *not* Terraform’s 
identifier!

33



34



tf output

35



Sensitive 
outputs

36



Variables

37



Variables must be declared. Type 
may be declared, or inferred from 
the default. If neither type nor 
default is given, a string is 
assumed.

Use variables just like you use 
resource attributes.

Variables are scoped to the 
package in which they are 
declared.

38



If `terraform.tfvars` exists, it will be 
evaluated.

Specify tfvars files, or set variables 
directly, on the command line. 

Or set them via environment 
variables.

Terraform will prompt for values for 
any variables that haven’t been set 
otherwise.

39



Precedence:

The last file or variable specified on 
the command line wins. 

Otherwise, `terraform.tfvars` wins.

Otherwise, an env var wins.

Otherwise, the default is used.

Otherwise, you’re prompted.

*Maps are merged!

40



Variable syntax 
summary

41



Modules

42



Modules are basically functions.

Recall that variables are scoped to 
a package. Therefore you must 
explicitly pass data into and out of 
modules.

43



Declare the variables that will be 
passed in.

Output the variables that will be 
returned. 

44



When passing variables into a 
module, make sure the names 
match!

45



46



Copy the necessary modules into 
the working directory.

Local paths can be relative or 
absolute.

Load remote modules from Git, 
Mercurial, HTTP URIs; S3; 
Terraform Registry.

Read and evaluate any third-party 
modules before using them!

47

tf get



48



Provisioners

49



Provisioners get resources ready 
for the next step. 

Maybe we use Ansible and need to 
ensure we have Python.

The provisioner will eventually 
timeout if, for example, you can’t 
SSH there from here.

50



Idempotent?

Multiple provisioners will be 
executed in the order they’re 
declared.

Terraform does not “grok” 
provisioners. A failed provisioner 
run will cause the entire resource to 
fail.

OTOH: a successful provisioner will 
never be re-run. What if you *want* 
to re-run a provisioner?

51



`tf taint` marks a resource as 
“tainted”—it is to be destroyed & 
recreated. 

`tf untaint`

52

tf taint



53



Is there a better way?

54



A `null_resource` is a “virtual 
resource” created in the project’s 
state.

To re-run the provisioner, `tf taint 
null_resource.provision_me`!

55



Other ways 
to use 
remote-exec 

`inline` takes a list of strings.

`script` will upload a file and 
execute it.

`scripts` will upload a directory.

56



More 
provisioners
* Not configuration management!

Chef

File

Local-exec

Salt-masterless

57



What if I want n of a thing? How do I loop?

58



Terraform iterates over `count`, 
setting `count.index` each time.

If `count` is > 3, we will get 
duplicate Env tags.

`*` means “all resources”.

Select into a list with the `element()` 
function.

59



OK, how about conditionals?

60



This almost 
works . . .

61



But the ternary 
operator is 
more flexible.

62



Use functions to modify variables.
https://www.terraform.io/docs/configuration/interpolation.html



tf console

64



Templates

65



Use templates where string interpolation 
would be unwieldy.

66



Data sources are dynamic, 
read-only ways to get at data.

Escape interpolation with `$$`.

Like modules, variables must be 
passed into a template expressly.

Unlike modules, template variables 
don’t get declared.

Also unlike modules, template 
variables are not accessed like 
`var.name`.

67



68



Well, that was anticlimactic . . .

69



AWS lets you pass “user data”: 
scripts that hosts will run on first 
boot.

Load a template from a file with the 
`file()` function. 

Render the template locally to 
assist debugging.

70



71



One-to-many is easy; what if we want 
many-to-one?

72



73



Here-doc syntax is available 
throughout Terraform.

The `local_file` resource will create 
directories as needed.

74



You can use functions in templates, 
too.

75



76



break
return at 1100



What happens if I lose state?

78



79



Use remote 
state!

Backup

Collaboration

Pipe data among tf projects

Pipe data among other tools

Update centralized SSOT

80



State backends

Artifactory

AWS S3

Azure

Consul

etcd

Google Cloud Storage

HTTP REST

OpenStack

81



Backends have specific 
configuration details.

Whichever backend you use, 
ensure that it is not publicly visible. 

Turn on versioning if available.

82



83

If the backend is already 
configured, `tf init` will proceed. 

Existing state will be migrated to 
the new backend. 



If the backend is not configured, 
use `tf init` to fill in the details. 

This is useful for automated 
configuration.

84



85

Now that state is stored remotely, 
we can easily use it in other parts 
of our infrastructure. 

`tf state pull` will fetch remote state.



Reference state outside of the package.

86



Security groups 
and an app

87



Reference remote state just like any 
other resource.

If the remote state changes, any 
references will become stale.

Re-apply any referring packages.

88



Happily, `terraform_remote_state` is 
a read-only reference. `destroy` 
does not touch it.

89



Inspect state.

90



91

tf show
Dump the state or planfile.

This is useful for figuring out how to 
reference a module we want to 
taint.

(But we can do better!)



92



tf state Select and pretty-print items from 
the state.

93



94



tf state pull | jq
`pull` will dump the state as JSON.

Now you can use the AWESOME 
`jq` JSON parser!

95



Use workspaces to namespace state.

96



tf workspace

Use distinct directories for state.

`new` to create, `list` to list, `select` 
to switch. `show` if you can’t 
remember where you are.

Use with the Consul and S3 
backends.

Use the variable 
`${terraform.workspace}` for e.g. 
naming things.

97



Enough AWS already!
What else can Terraform orchestrate?

98



Let’s take a tour.
Beware the bright light!

99



Google Cloud

100



PostgreSQL

101



And of course, you can mix-and-match.

102



103



Recap: providers, resources & data 
sources

104



Provider 
arguments

Providers vary as to authentication.

Creds may be provided inline, via 
environment variables, and/or 
filesystem paths.

Providers may require regions, 
cloud types, and/or projects to be 
specified.

Store your creds safely!

105



Resource 
arguments and 
attributes

Arguments to resources may be 
required or optional. 

Some arguments can be changed 
without re-creating the resource.

An attribute’s value always reflects 
its current state. Refresh via `plan` 
or `apply`.

106



Data sources
Data sources are *read-only*.

Arguments provide filters to restrict 
the kind / quantity of results.

Attributes are typically numerous 
and contain nested data structure.

107



Gotchas



Gotcha!
Module param 
mismatch

109



Gotcha!
Silent failure on 
missing output

110



Silent failure on 
missing output
(cont.)

111



Gotcha!
Useless var 
interpolation!

112



Use `local` 
variables.

113



Gotcha!
Multiple 
accounts

114



Gotcha!
Bizarre errors

115



Gotcha!
State changed 
from under me!

116



Gotcha!
Destroy is scary!
Insurance against co-workers?

117



Gotcha!
Timeout!

118



Gotcha!
Increase 
verbosity

`TF_LOG=<TRACE, DEBUG, 
WARN, INFO, ERROR>`

You get to drink from the firehose!

It’s mainly useful for proving you’ve 
found a bug.

119



Gotcha! 
A bug in the 
provider!

Use the provider’s `version` 
argument to pin it.

Providers are in a separate GitHub 
organization from Terraform Core: 
https://github.com/terraform-providers . 
Look at the relevant CHANGELOG.

120



Gotcha!
tfstate is huge!

It’s just JSON. Use `jq` or your 
favorite programming language.

Go install `jq` and rejoice.

121



Gotcha! 
Dependencies 
hurt my brain!

122



123



124



. . . Getcha?
Golang niceities

Terraform is a single binary. 
Download from http://terraform.io .

`tf fmt` will apply the standard Go 
formatter to canonicalize 
style—spacing, quoting, etc.

`tf validate` will check for syntax 
and dependency graph issues.

125



Q & A



Thank you.
Please fill out your surveys.


