Deployment &
Orchestration with
Terraform

Copyright © 2017 Christopher DeMarco.
All Rights Reserved.

The opinions and mistakes that follow are my own and do not represent my employer, Hashicorp, USENIX, or anyone else.

All code samples were believed correct at runtime.
Your mileage may vary.

To my grandfather, who taught me how to write.
To my father, who taught me why.

Who has used Terraform before?

Infrastructure
Orchestration

* Not configuration management!

All your vendors’ web interfaces are
different, and they all suck.

How do you document
mouse-and-keyboard? Playback?!

How can creating infrastructure
become repeatable and reliable?

Infrastructure
as Code

Because programming makes
things easier!

Automation!

Scale / test / rollback
Version

Collaborate / audit

Have you tried turning it off & back
on again?

Interface consistency

Make devs help!

“Infrastructure” is broad:

e AWS e Google Compute Engine
e Azure ® Oracle Public Cloud

e 1&1 e Digital Ocean e Scaleway
e \/MWare ¢ Docker ® Heroku

e OpenStack ® Kubernetes

e Rancher ¢ Nomad

e CloudFlare ¢ Dyn ¢ DDNS

e Chef Cobbler ¢ Rundeck

e MySQL ¢ PostgreSQL ® RabbitMQ
e DataDog ¢ Grafana ® New Relic

e Icinga2 e Librato ¢ StatusCake

e Mailgun ® OpsGenie ® PagerDuty

Stop making
tools

| don’t want a drill bit,
| want a hole!

Stateful

Intelligent dependency graphing
Lightweight DSL

Incremental

Golang makes it fast and portable.

Commercial support available

Stop talking

show us something already

Providers connect to a service that
you’ll be managing.

Resources are the things you want
to manage. They are declared with
a type and an identifier.

A resource has arguments. They
can be strings, lists, or maps.

Whitespace is flexible.

HCL can be converted to/from
JSON.

4# alias tf=terraform

tf

INIt

Initialize the package directory.
Copy in needed binaries.

Initialize empty state if none exists.

‘tf init’ is idempotent.

Terraform will prompt you to run
“terraform init if it can’t find what it
needs.

11

2 tf init
Initializing provider plugins...

The following providers do not have any version constraints in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = " " constraints to the
corresponding provider blocks in configuration, with the constraint strings
suggested belou.

¥ provider.aws: version = "> B.1"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan” to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessaruy. 12

tf plan

Interrogate the provider[s].

Compare with local state.

Calculate dependency graph.

Print what will be done.

The plan is not saved (unless
expressly requested).

(K

% tf plan

Refreshing Terraform state imn-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

An execution plan has been generated and is shoun belou.
Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

+ aws_instance.hello_world

1clls
ami;

<{computed>
"ami-6beec5@6"

associate_public_ip_address: <computed>

availability_zone: <{computed>
ebs_block_device. #: <{computed>
ephemeral _block_device. #: <{computed>
instance_state: <{computed>
instance_type: "t2.micro”
ipvb_address_count: <{computed>
ipvb6_addresses. #: <computed>
key_name: {computed>
network_interface.;: <{computed>
network_interface_id: <computed>
placement_group: {computed>

primary_network_interface_id: <{computed>

private_dns: <computed>
private_ip: <{computed>
public_dns: {computed>
public_ip: <{computed>
root_block_device. #: <{computed>
security_groups.§: <{computed>
source_dest_check: "true"
subnet_id: <computed>
tags.%: i
tags.Name; “Alice"
tenancuy: <computed>
volume_tags.%: <{computed>
vpc_security_group_ids. #: {computed>

Plan: 1 to add, 8 to change,

B to destroy.

Note: You didn't specify an

'-out" parameter to save this plan, so Terraform

can't guarantee that exactly these actions will be performed if
“terraform apply" is subsequently run.

14

tf apply

Plan.
Apply the dependency graph.

Update local state.

15

tf apply

aws_instance.hello_world: Creating...
ami : S s
associate_public_ip_address: "" =
availability_zone:
ebs_block_device.t:
ephemeral _block_device.#:
instance_state:
instance_type:
ipvb_address_count: "<{computed>"
ipvb_addresses.#: "<{computed>"

> "ami-66eec5B6"
>
?
>
>
>
»3
>
>

key_name: " => "<computed>"
=>
2
>
>
»3
2
>
>
>

"<{computed>"
"<{computed>"
"<{computed>"
"<{computed>"
"<{computed>"
"t2.micro"

network_interface.t: "<{computed>"
network_interface_id: "<{computed>"
placement_group: "<{computed>"
primaru_network_interface_id: "<{computed>"
private_dns: "<{computed>"

private_ip: " "<computed>"

public_dns: i "<{computed>"

public_ip: " "<{computed>"

root_block_device.t: i "<{computed>"

security_groups.i: "" => "<computed>"

source_dest_check: =l

subnet_id: "" => "<computed>"

tags.%: HE g i

tags.Name: " => "Alice"

tenancuy: " => "{computed>"

volume_tags.%: """ => "<computed>"

vpc_security_group_ids.#: " => "<computed>"
aws_instance.hello_world: Still creating... (18s elapsed)
aws_instance.hello_world: Still creating... (28s elapsed)

aws_instance.hello_world: Creation complete after 21s (ID: i-B78957aBa7bblflaa)

Applu complete! Resources: 1 added, 8 changed, 8 destroued.

% tf apply
aws_instance.hello_world: Refreshing state... (ID: i-878957aBa7bblflaa)

Apply complete! Resources: B added, B changed, B destrouyed.

17

Let’s change
something.

provider

resource

ami =

INnstance_1

{

Name =

18

tf plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

aws_instance.hello_world: Refreshing state... (ID: i-8768857aBa7bblflaa)

An execution plan has been generated and is shown below.
Resource actions are indicated with the following sumbols:
- update in-place

Terraform will perform the following actions:
tégs.Name: "H]icé" => "Bob"

Plan: B8 to add, 1 to change, 8 to destroy.

Note: You didn't specify an "-out" parameter to save this plan, so Terraform
can't guarantee that exactly these actions will be performed if
"terraform apply"” is subsequently run.

19

t tf apply

aws_instance.hello_world: Refreshing state... (ID: i-878857aBa7bblflaa)
aws_instance.hello_world: Modifying... (ID: i-B78957aBa7bblflaa)

tags.Name: "Alice"” => "Bob"
aws_instance.hello_world: Modifications complete after 1s (ID:

Apply complete! Resources: B added, 1 changed, B8 destroyed.

i-8786957aBa7bblflaa)

20

What if it's a
destructive
change?

provider

21

% tf plan
Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

aus_instance.hello_world: Refreshing state... (ID: i-81Bb583b2f2bb33a5)

An execution plan has been generated and is shown belouw
Resource actions are indicated with the following symbols:
/+ destroy and then create replacement

Terraform will perform the following actions:

"ec2-54-193-12-19 ,us-vest-1,compute.amazonaws.com" => <{computed>

/+ aus_i (new resource required)
id: "i-818b583b212bb33a5" => <computed>
ami: "ami-66eec5@6" => "ami-7f15271f"
associate_public_ip_address: "true" => <{computed>
availability_zone: "us-uvest-1b" => <{computed>
ebs_block_device.#: "g" => <computed>
ephemeral _block_device. . #: "B" => <computed>
instance_state: "running" => {computed>
instance_tupe: "t2.micre” => "t2.micro”
ipv6_address_count: "' =) <computed>
ipv6_addresses . #; “g" => <computed>
key_name: "" => {computed>
network_interface. #: "B" => <computed>
network_interface_id: "eni-7a736a79" => {computed>
placement_group: """ =» {computed>
primary_network_interface_id: "eni-7a736a79" => <computed>
private_dns: "ip-172-31-2-29,us-west-1.compute. internal” => <computed)
private_ip: "172.31,2.29" => <computed)>
public_dns:
public_ip: "54.193.12.19" => <computed>
root_block_device.#: "1" => <computed>
security_groups.#: "g" => <computed>
source_dest_check: “true" => "true"
subnet_id: "subnet-6fe2ec29" => <computed>
tags . %: = 1
tags . Name: “Bob" => "Bob"
tenancy: "default" => <computed>
volume_tags.%: "B" => <computed>
vpc_security_group_ids.#: "1" => <computed>

Plan: 1 to add, 8 to change, 1 to destroy

Note: You didn't specify an "-out" parameter to save this plan, so Terraform

can't guarantee that exactly these actions will be performed if

“terraform apply"

is subsequently run

22

2 tf apply

aws_instance.hello_world: Refreshing state...
aws_instance.hello_world: Destrouing...
aws_instance.hello_world: Still destroying...
aws_instance.hello_world: Still destroying...

(ID:

(ID: i-B18b583b2f2bb33as)

1-B18b583b2f2bb33a5)

(ID: i-B16b5B83b2f2bb33aS5, 18s
(ID: i-B18b583b2f2bb33aS. 28s

aws_instance.hello_world: Still destroying... (ID: i-B18b5B83b2f2bb33a5, 38s

aws_instance.hello_world: Still destroying...

aws_instance.hello_world: Destruction complete after 5B8s
aws_instance.hello_world: Creating...

ami:
associate_public_ip_address:
availability_zone:
ebs_block_device. #:
ephemeral _block_device.#:
instance_state:
instance_type:
ipvb_address_count:
ipvb_addresses.#:
key_name;
network_interface.#:
network_interface_id:
placement_group:

primary_network_interface_id:

private_dns:
private_ip:
public_dns:
public_ip:
root_block_device . #:
securitu_groups. &:
source_dest_check:
subnet_id:

tags. %:

tags. Name:

tenancy:
volume_tags.%:
vpc_security_group_ids.#:

=>

"ami-7f15271f"
"<computed>"
"<{computed>"
"<computed>"
"<{computed>"
"<computed>”
O rmierat
"{computed>"
"{computed>"
"<{computed>"
"<computed>"
"<conmputed>"
"<{computed>"
"<{computed>”
"<computed>"
"<{computed>"
"{camnputed>"
"<{computed>"
"<{computed>”
"<computed>"

"true"

"<computed>"

nqw
“Bob"

"{camputed>"
"{computed>"
"{computed>"
aws_instance . hello_world: Still creating...
aws_instance.hello_world: Creation complete after 15s (ID:

(18s elapsed)

Apply complete! Resources: 1 added, B changed, 1 destroyed.

(ID: i-B1@b583b2f2bb33aS, 48s

elapsed)
elapsed)
elapsed)
elapsed)

1-Be72857272cB73abe)

23

What if we
remove the
resource?

£ 1f plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

auws_instance.hello_world: Refreshing state... (ID: i-Be72857272cB73abe)

An execution plan has been generated and is shouwn below.
Resource actions are indicated with the following symbols;
destroy

Terraform will perform the following actions:

Plan: B to add, @ to change, ! to destrou.

Note: You didn't specify an "-out" parameter to save this plan, so Terraform
can't guarantee that exactly these actions will be performed if
“"terraform apply"” is subsequently run.

25

tf destroy

aws_instance.
aws_instance.
aus_instance.
aws_instance.
awus_instance.
aws_instance.

Destroy complete!

-force

hello_world:
hello_world:
hello_world:
hello_world:
hello_world:
hello_world:

Refreshing state... (ID: i-Be72857272cB73ade)
Destroying... (ID: i-Be72@857272cB73ade)

Still destrouing... (ID: i-Be72857272cB73abe,
Still destrouing... (ID: i-Be72857272cB73abe,
Still destroying... (ID: i-Be72857272cB73ale,
Destruction complete after 48s

Resources: 1 destroyed.

18s elapsed)
28s elapsed)
38s elapsed)

AS)

tf destroy

Teardown *all* resources.

Prompt for confirmation (unless
“-force).

There is no undo!

Calculate dependency graph so
deletion is never* blocked.

27

tf destroy

aws_instance.
aws_instance.
aws_instance.
aws_instance.
aws_instance.
aws_instance.
aws_instance.

-force

hello_world:
hello_world:
hello_world:
hello_world:
hello_world:
hello_world:
hello_world:

Refreshing state... (ID: i-8f77f2f384fa398d7)
Destroying... (ID: i-Bf77f2f3B4fa398d7)

Still destrouing... (ID: i-Bf77f2f384fa398d7,
Still destroying... (ID: i-Bf77f2f384fa398d7,
Still destroying... (ID: i-B8f77f2f384fa398d7,
Still destrouing... (ID: i-B8f77f2f384fa398d7,
Destruction complete after 58s

Destroy complete! Resources: 1 destroued.

18s
28s
38s
48s

elapsed)
elapsed)
elapsed)
elapsed)

xS

In a demo,
No-one can see
your creds.

Use the provider’s default setup?
(e.g. ~/.aws)

Use env vars?
Set expressly?

Read a file?

AS

Let’s build a simple webserver.

A tree

aws.tf

— dns.tf

— securitugroup.tf

— terraform.tfstate

— terraform.tfstate.backup
— webserver.tf

B directories, 6 files

Terraform will load and evaluate
everything in the current directory
named like ™*.tf .

Configuration is declarative, order
does not matter.

Dependencies will be discovered
and graphed.

31

resource ws_eip yebserver" {
VPC = true

instance = "${aus_instance.webserver.id}
}
resource aws_instance webserver {

ami = 5E S@El

instance_type =

{
volume_size = 188
volume_type =
3}
vpc_security_group_ids = [
${aws_securituy_group.webserver.id}
]
{ Name = "webserver }
}
output "public_ip" {
value = "${aws_eip.webserver.public_ip}

}

Dependency graphing means that
order does not matter!

Once a resource is instantiated, it
exports attributes. Dereference
them like "${type.name.attribute} .

Outputs will become very useful
later on.

32

resource aws_securitu_group” “webserver’ {
{
from_port = 88 to_port = B8 protocol = "tcp”
cidr_blocks = ['6.6.8.8/8"]
}

{ . "
from_port = @ to_port = @ protocol = "-1" Dependencies can span files . . .

["0.0.8.8/8"] this can become difficult to
{ Name = 'Foo 1} manage. Use common sense.

cidr_blocks
}

‘name attribute is *not* Terraform’s
identifier!

resource "aws_route53_record” “"webserver” {
zone_id = Ql
name = °
type
ttl = 66
records = ["${aus_eip.uwebserver.public_ip}"]

33

ephemeral _block_device.#:
instance_state:
instance_type:
ipv6_address_count:
ipvb_addresses.f:
key_name:
network_interface.#:
network_interface_id:
placement_group:

primary_network_interface_id:

private_dns:
private_ip:
public_dns:
public_ip:
root_block_device.#
root_block_device.B
root_block_device.B.iops:
root_block_device.8
root_block_device.8
security_groups.#:
source_dest_check:
subnet_id:

tags.%:

tags.Name:

tenancy:

volume_tags.%:
vpc_security_group_ids.#:

vpc_security_group_ids.3296683873:

aws_instance.uwebserver: Sti
aws_instance.uwebserver: Sti

allocation_id: R =S
association_id: =
domain: =>
instance: =)
network_interface: "" =>
private_ip: SR =5
public_ip: =5
vpc: "=y

.delete_on_termination:

.volume_size:
.volume_tuype:

=>
=
=
=>
=>
=>
=

B

=>
=>
=>

B

=
=
=>
=>
=>
=
=
=7
=>
=>
=>
=
=>
=
=>
=>

"<computed>"
"<computed>"
"t2.micro"
"<computed>"
"<computed>"
"<computed>"
"<computed>"
"<computed>"
"<computed>"
"<computed>"
"<computed>"
"<computed>"
"<{computed>"
"<computed>"
e

"true"
"<computed>"
"188"

"gp2"
"<computed>"
"true"
"<computed>"
nyn
"webserver"
"<computed>"
"<computed>"
nyn
"sg-Bab53B6c"

11 creating... (18s elapsed)
11 creating... (28s elapsed)
aws_instance.uwebserver: Creation complete after 22s (ID: i-81426c7aeffc499e9)
aws_eip.webserver: Creating...

"<computed>"
"<computed>"
"<computed>"
"i-B1426c7aeffc499e9"
"<computed>"
"<computed>"
"<computed>"

"true"

aws_eip.webserver: Creation complete after 1s (ID: eipalloc-aB76859d)

Apply complete! Resources:
Outputs:

public_ip = 13.57.129.123

3 added, @ changed, 8 destroyed.

K2

tf output

4 1f output
public_ip = 13.57Y.129.129
%2 ssh $(tf output public_ip)

35

Sensitive
outputs

output sername { value = }
output password { value = sensitive = true }
tf appluy

Apply complete! Resources: B added, 8 changed, 8 destroued.
Outputs:

password = <{sensitive>
username = hunter

% tf output
password = hunter
username = hunter

36

Variables

37

n

{ default

Variables must be declared. Type
may be declared, or inferred from
the default. If neither type nor
default is given, a string is
assumed.

Use variables just like you use
resource attributes.

Variables are scoped to the
package in which they are
declared.

38

% tf plan -var "am_image=ami-f@8f331d9"

% TF_VAR_somedir=$HOME tf plan

tf plan
var .name
Enter a value: I

-var-file=dev,tfvars

If “terraform.tfvars™ exists, it will be
evaluated.

Specify tfvars files, or set variables
directly, on the command line.

Or set them via environment
variables.

Terraform will prompt for values for
any variables that haven’t been set
otherwise.

39

name =

% tf plan -var "am_image=ami-f@8f331d9"

% TF_VAR_somedir=$HOME tf plan

tf plan
var .name
Enter a value: I

-var-file=dev,tfvars

Precedence:

The last file or variable specified on
the command line wins.

Otherwise, terraform.tfvars wins.
Otherwise, an env var wins.
Otherwise, the default is used.
Otherwise, you’re prompted.

*Maps are merged!

40

Variable sy
summary

T
S

o Q

o

o

=

D =

QO @
o o

a]] Q

1]

O O = —h

(g

o

O v O

a1}

5 0 Cc —

N

1]

m M

1]

— 0

{

=11}
= 3.141592358769 1}

default = [1, 2, 3,1 1}

mumble = [,

41

Modules

42

L tree

— auws.tf
— modules
L— server
L— server.tf
— terraform.tfstate
— terraform.tfstate.backup
— terraform.tfvars
— web.tf

Modules are basically functions.

Recall that variables are scoped to
a package. Therefore you must
explicitly pass data into and out of
modules.

2 directories, b files

43

variable "
variable "
variable

ty_group_ids" { tuype = "list" }

resource "aws_instance" "server" { DeCIare the Varlables that WI” be
ami = "${var.aTi:}_w e paSSed |n

instance_type = "t2.micro
vpc_security_group_ids = ["${var.securitu_group_ids}"]
{ Name = "${var.namel}" 1}

; Output the variables that will be
resource "aws_eip”’ "server" { rEBtL]rr]EB(j.

vpc = true
instance = "${aws_instance.server.id}"

{ value = "${aus_eip.server.public_ip}" }

output " 5
{ value = "${aws_instance.server.id}" }

output

variable "frontend_name" { default = "web" 2
variable "backend_name" { default = "api" 2
variable "amis" { tupe = "map" default = {} }

module "frontend"” {
source = "'modules/server"
name = "${var.frontend_namel}"
ami = "${var.amis["frontend"1}"
security_group_ids = ["${auws_security_group.frontend.id}"]

module "backend" {
source = "modules/server”
name = "${var.backend_namel}"

ani = "$lvar .amist "backend" D)’ ‘,‘ When passing variables into a
security_group_ids = ["${aws_security_group.backend.id}"]

module, make sure the names
name = "Iruntend" matCh!

from_port = 88 to_port = 88 protocol = "tecp”
cidr_blocks = ["68.8.8.8/8"1]

resource "aws_security_group” "frontend" {

¥
{ from_port = 8 to_port = B protocol = "-1"
cidr_blocks = ["6.8.8.8/8"1]
}
}
resource "aws_security_group” "backend" {
name = "backend"
{
from_port = 8888 to_port = 8888 protocol = "tcp"
cidr_blocks = ["${module.frontend.public_address}/32"]
}
{ from_port = 8 to_port = @ protocol = "-1"
cidr_blocks = ["8.0.68.8/8"]
¥
}
output "frontend" { value = "module.frontend.public_address" } 45

output "backend" { value = "module.backend.public_address" 1}

i tf plan
Failed to load root config module: Error loading modules: module frontend: nmot found., may need to be downloaded using 'terraform get'

46

tf get

Copy the necessary modules into
the working directory.

Local paths can be relative or
absolute.

Load remote modules from Git,
Mercurial, HTTP URIs; S3;
Terraform Registry.

Read and evaluate any third-party
modules before using them!

47

module “"backup_me" {

source = "../B937_modules/modules/server"
name = "example”
ami = "ami-327f532"

securitu_group_ids = ["${aws_securitu_group.sg.id}"]

}

module "lambda_ami_backup” {

source = 'cloudposse/ec2-ami-backup/aws”
name = “backup_me"
stage = "dev"
namespace = 'backup_me"
region = "us-west-1"
ami_owner = "${var.account_id}"
instance_id = "${module.backup_me.instance_id}"
retention_daus = "1"
backup_schedule = "rate(5 minutes)"”
}
% tf get
Get: file:///Users/demarco/cmd/terraform_class/8937_modules/modules/server
Get: https://api.github.com/repos/cloudposse/terraform-aws-ec2-ami-backup/tarball/B.2.3%archive=tar.gz
Get: git::https://github.com/cloudposse/tf_label .git?ref=tags/6.1.8
Get: git::https://github.com/cloudposse/tf_label .git?ref=1ags/6.1.8
Get: git::https://github.com/cloudposse/tf_label .git?ref=tags/6.1.8
Get: git::https://github.com/cloudposse/tf_label.git?ref=1ags/6.1.08

48

Provisioners

49

variable k {
default = {
pub =
priv =
I
i

resource z {

key_name =

public_key = "${filelvar.ssh_keuy_pathl["pub"1)}
}

resource 5 {
ct +

pair.lisa.key_namel

ss = true

vpc_security_group_ids = ["${aws_security_group.example.id}"]

provisioner {
inline = [

Provisioners get resources ready
for the next step.

Maybe we use Ansible and need to
ensure we have Python.

The provisioner will eventually
timeout if, for example, you can’t
SSH there from here.

50

ldempotent?

Multiple provisioners will be
executed in the order they’re
declared.

Terraform does not “grok”
provisioners. A failed provisioner
run will cause the entire resource to
fail.

OTOH: a successful provisioner will
never be re-run. What if you *want*
to re-run a provisioner?

51

tf taint

“tf taint’ marks a resource as

“tainted” —it is to be destroyed &
recreated.

tf untaint

52

% tf plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

aus_key_pair.lisa: Refreshing state... (ID: lisa)
aus_securitu_group.example: Refreshing state... (ID: sg-196f3a7f)
aus_instance.provision_me: Refreshing state... (ID: i-B1626df619a587e58)

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
/+ destroy and then create replacement

Terraform will perform the following actions:

/+ a nstanc e
id:
ami ;
associate_public_ip_address:
availability_zone:
ebs_block_device. #:
ephemeral_block_device. #:
instance_state:
instance_type:
ipvb_address_count:
ipvb_addresses . #:
key_name:
network_interface.#:
network_interface_id:
placement_group:

primary_network_interface_id:

private_dns:
private_ip:
public_dns:
public_ip:
root_block_device.#:
security_groups. . #:
source_dest_check:
subnet_id:

tenmancy:
volume_tags.%:
vpc_security_group_ids. #:

vpc_security_group_ids.1666365661:

(new resource required)
"i-81620df619a587e58" => <computed>
“ami-839ab163" => "ami-839ab163"
“true" => "true"

"us-west-1b" => <computed>

"@" => <{computed>

"@" => <computed>

“running" => <{computed>

"t2.micro" => "t2.micro"

""" => <{computed)>

"@" => <{computed>

“lisa" => “lisa®

""" => <{computed>

“eni-ablc@5aB" => <computed>

" => <{computed>

"eni-ablc@5aB8" => <computed>
"i{p-172-31-13-159.us-uest-1.compute.internal” => <computed>
"172.31.13.159" => <computed>
"@c2-52-53-154-45 ,us-vest-1,compute,amazonaus . con” => <{computed>
"52,53.154.45" => <computed>

"1" => {computed>

"@" => <computed>

“true” = "true"

"subnet-6fe2ec29" => <computed>
"default" => <{computed>

""" => <{computed>

=3 "t

"sg-196f3a7f" => "sg-196f3a7f"

Plan: 1 to add, @ to change, 1 to destroy.

Note: You didn't specify an

‘-out" parameter to save this plan, so Terraform

can't guarantee that exactly these actions will be performed if

“"terraform applu” is subsequently run.

53

Is there a better way?

variable = {
default = {

pub

priv
}
}

resource ke {
key_name =

public_key = "${file(var.ssh_key_path["pub"1)}

A 'null_resource’ is a “virtual
instance._tupe = "1z.nicro” resource” created in the project’s
key_name = "${aws_key i (,‘Lé“ el State.

${aws_securitu_group.example.id}"]
y_gd !

'<‘_
associate_public_ip_a

d s
vpc_securitu_group_ids = [

}

vision_ne” To re-run the provisioner, "tf taint

{

. instance_id = "${aus_instance.example.id} nU”_reSOUI’CG_prOViSion_me‘!
provisioner emote-exe il
inline = [

{

_key = "${file(var ssh_key_pathl"priv"1)}
host = "${aws_instance.example.public_ip}

Other ways
fo use
remote-exec

‘inline” takes a list of strings.

‘script” will upload a file and
execute it.

‘scripts’ will upload a directory.

56

More
provisioners

* Not configuration management!

Chef
File
Local-exec

Salt-masterless

57

What if | want n of a thing? How do | loop?

]

Terraform iterates over count,
setting count.index each time.

If ‘count’ is > 3, we will get
duplicate Env tags.

AT

means “all resources”.

Select into a list with the "element()
function.

59

OK, how about conditionals?

module "frontend" {
sgurce =
is_public = 1

}

module "backend" {
sgurce =
is_public = B

This almost
works . . .

variable "is_public” { }
resource aws_instance veb” o
ami = 63
instance_tupe =
}
resource aws_eip geb” {
count = "${var.is_publicl}’
'${ 1}

instance = %${aws_instance.web.id

operator Is
more flexible.

But the ternary -

-

}

Al

1]

S

C

un

|

s

(1]

A |

ur
1

—

fr

cid

u

o

o

I

_blocks

¢4 is.
e = "${aus
{
port = 860 t
locks = [

}

(S |

a

0

(o]

62

Use functions to modify variables.

https://www.terraform.io/docs/configuration/interpolation.html

tf console

%
>

tf console
"${format("host-%83d", 23)}"

host-6823

echo '"${urlencode(title("hello world"))3}"'
tf console
Hello+World

variable "passwd” { }

%
b
[

tf console -var "passwd=%(grep $(whoami) /etc/passud)"
"${slice(split(":", var.passwd), 6, 7)}"

/usr/bin/zsh

64

Templates

Use templates where string interpolation
would be unwieldy.

Data sources are dynamic,

read-only ways to get at data.
Escape interpolation with "$$'.

Like modules, variables must be
passed into a template expressly.

Unlike modules, template variables
don’t get declared.

Also unlike modules, template
variables are not accessed like
‘var.name'.

67

£ tf apply

data.template_file.hello: Refreshing state...
null_resource.hello: Creating...

null_resource.hello: Provisioning with 'local-exec'...

null _resource.hello (local-exec): Executing: ["/bin/sh” "-c" "echo Hello world!"]

null_resource.hello (local-exec): Hello world!
null_resource.hello: Creation complete after Bs (ID: 64132928B62365849689)

Apply complete! Resources: 1 added, B changed, B destroued.

A tf apply

data. template_file.hello: Refreshing state...

null_resource.hello: Refreshing state... (ID: 64132928862365849089)

Apply complete! Resources: B added, B8 changed, 8 destroued.

68

Well, that was anticlimactic . . .

variable "clustername” { default = "megamaid"” }
: name’ { default = "skr '
variable "password" { default = "123

variable

|
e

resource aws_instance” "ecs_host" {
count = "${var.countl}"”
e e R AWS lets you pass “user data”:
ami = "ami-89 hB9
instance_tupe = "t2.micro” scripts that hosts will run on first
user_data = "${data,template_file,script.rendered}"

{ boot.

Name = "${ecs_host_%${count.index}"

ClusterName = "${var.clusternamel}"”

) Load a template from a file with the
data "template_file" "script’ { ‘ﬂle()\ funCt|0n

template = "${file("ecs_init.sh.tmpl")}"

i
clustername = "${var.clusternamel}’ Render the template |OC8.||y tO

username = ${var.usernamel}’

password = "${var .password}" aSSISt debugglng
}

resource local_file" "debug’ {
content = "${data,template_file.script.rendered}”
filename = "out'

cat <{'EOF" >> ecs.config

ECS_CLUSTER=${clustername}

ECS_ENGINE_RAUTH_TYPE=docker
ECS_ENGINE_AUTH_DATA={"https://index.docker.io/vi1/" :{"username":"${usernamel”, "password”: "${password}, "email” :"email@example.com"}}
ECS_LOGLEVEL=debug

EOF

71

One-to-many is easy; what if we want
many-to-one?

£ cat . tmuxinator/example.uyml
name: example
windous:
- hosts:
layout: even-vertical
panes;
- ssh —-g ubuntu@54,183.68,135
- ssh -g ubuntu@54.67.98.39
- ssh —-g ubuntul@34,241.148,128

73

CD:I;_ :r /ar .count? T
{
address = "${element(aws_instance host.* public_ip, count.index)}

}
} [.
e { Here-doc syntax is available

- sopts throughout Terraform.
o The ‘local_file’ resource will create
i directories as needed.

: hosts = "${join("\n mp 1 1 tor_ho nde
}
resource {

fil-;_‘a; ’: $$:ic a ITTI?!atE__'I’iIE tmuxinator _wrapper.rendered}

74

variable "somelist" { default "baz"1 1}

= ["foo", "bar”,
variable "somestring"” { default =
data "template_file" " json" {
template = <<EOF
{
"someparams": $${somelist},

"passuord": $${ jsonencode(bcrypt(somestring, 18))}
}

EOF
vars = {
somelist = "${ jsonencode(var.somelist)}"
somestring = "${var.somestring}"
}
}

resource 'local_file" "output” {
content = "${data.template_file. json.rendered}"
filename = "somefile. json”

“this secret password"

You can use functions in templates,
too.

75

{

"someparams” :

"passuword”
}

Edl _f-undl : “bar“ : “bazﬂ] ;
"$2a$18%94g/T79gD0XughhXIyZlx20pe5DaldLb94JCNBL ,m2UrzPkFWATbpm™

76

break

return at 1100

What happens if | lose state?

% tf apply

aus_security_group.example: Creating...

description:
egress . #:
ingress.§:
name :
ouner_id:
vpc_id:

=
=
=5
=>
=5
=>

"Managed by Terraform”
"<{computed>"
“"{computed>"

"example"

"{computed>"
“"{computed>"

e

Use remote
statel

% echo 'terraform,tfstatex' >> .gitignore

Backup

Collaboration

Pipe data among tf projects
Pipe data among other tools

Update centralized SSOT

80

State backends

Artifactory

AWS S3

Azure

Consul

etcd

Google Cloud Storage
HTTP REST

OpenStack

81

backend

Backends have specific

configuration details.

Whichever backend you use,
ensure that it is

Turn on if available.

82

¥ tf init

Initializing the backend...

Do you want to copy state from "local” to "s3"7
Pre-existing state was found in "local” while migrating to "s3". No existing
state was found in "s3". Do you want to copy the state from "local” to
"53"? Enter “yes" to copy and "no” to start with an empty state.

Enter a value: yes

Successfully configured the backend "s3"! Terraform will automatically
use this backend unless the backend configuration changes.

Initializing provider plugins...

The following providers do not have any version constraints in configuration,
so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = "..." constraints to the
corresponding provider blocks in configuration, with the constraint strings

suggested below.

#% provider.auws: version = "> 8.1"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running “terraform plan™ to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget., other
commands will detect it and remind you to do so if necessary.

If the backend is already
configured, tf init” will proceed.

Existing state will be migrated to
the new backend.

83

{
backend s3 |
. If the backend is not configured,
e : use tf init’ to fill in the details.

This is useful for automated
tf init \ configuration.

-backend-config="bucket=cmd-1isa-state"” \
-backend-config="key=somename/terraform.tfstate" \
-backend-config="region=us-west-1"

WON WV R

84

Now that state is stored remotely,
we can easily use it in other parts

/path/to/terraforn/package of our infrastructure.
ip $(tf output);

curl -s http://%ip/alive >/dev/null || DOWN
‘tf state pull” will fetch remote state.

85

H

\eference state outside of the package.

Security groups
and an app

%2 tree

— 4app
— app.tf
— aws.if
— environments
— aws.tf
— environment
L terraform.tf
— environments.tf
— terraform,tfstate,backup

3d directories, b files

87

backend

{

Reference remote state just like any
other resource.

If the remote state changes, any
references will become stale.

Re-apply any referring packages.

88

% tf destroy -force

data.terraform_remote_state.environments: Refreshing state...
aws_instance.app: Refreshing state... (ID: i-Bba24el55a75dc3d5)
aws_instance.app: Destroying... (ID: i-Bba24elS55a75dc3ds)

aws_instance.app: S5till destroying... (ID: i-Bba24el155a75dc3dS, 18s elapsed)
aws_instance.app: 5till destroying... (ID: i-Bba24el55a75dc3d5, 28s elapsed)
auws_instance.app: 5till destroying... (ID: i-BbaZ4el155a75dc3d5, 38s elapsed)
aws_instance.app: Destruction complete after 3is

Destroy complete! Resources: 1 destroyed.

Happily, terraform_remote_state is
a read-only reference. ‘destroy’

¥ cd ../environments .

X tf plan does not touch it.

Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

aws_security_group.environment:; Refreshing state... (ID: sg-15cB4973)
aws_security_group.environment: Refreshing state... (ID: sg-dbcedTbd)

Ho chanmges. Infrastructure is up-to-date.
This means that Terraform did not detect any differences betwesn your

configuration and real physical resources that exist. As a result., no
actions need to be performed

Inspect state.

tf show

Dump the state or planfile.

This is useful for figuring out how to
reference a module we want to
taint.

(But we can do better!)

91

4 tf shouw |

domain = v
instance =

private_ip
public_ip
vpc = true

head -38
aus_elip.uwebserver:
id = eipalloc-c451a2f9
association_id = eipassoc-Bad78636

pc

1-B5B6975b33cB7158b
network_interface = eni-b37fb7bM

LT I | S

13.56.4.11

aus_instance.webserver:
id = 1-B586975b33cB71568b
ami = ami-b6beec586
associate_public_ip_address = true
availability_zone = us-west-1b
disable_api_termination = false
ebs_block_device . # = @

ebs_optimized

= false

ephemeral _block_device . # = 8
iam_instance_profile =
instance_state = running

instance_type

= t2.micro

ipvb_addresses . # = 8

keu_name =
monitoring

false

network_interface. = 8
network_interface_id = eni-b37f67b8
primary_network_interface_id = eni-b37fb7bA

private_dn
private_ip
public_dns

s

]

1

ip-172-31-14-52 .us-west-1 compute.internal
172.31.14.52
ec2-13-57-3-112 us-west-1,compute,amazonaus.com

92

tf state

Select and pretty-print items from
the state.

93

tf state list
aus_elp.webserver
aus_instance.webserver
aws_securility_group.uvebserver

94

tf state pull | jg

‘pull” will dump the state as JSON.

Now you can use the AWESOME
ig JSON parser!

95

Use workspaces to hamespace state.

96

tf workspace

Use distinct directories for state.

‘new to create, list to list, ‘select

to switch. ‘'show' if you can’t
remember where you are.

Use with the Consul and S3
backends.

Use the variable

“${terraform.workspace} for e.g.

naming things.

97

Enough AWS already!
What else can Terraform orchestrate?

Let’s take a tour.
Beware the bright light!

Google Cloud

provider "google" {
credentials = "${file("keys/project. json")}"
project = 9
region = "us-east

resource

name =
machine_tupe =

Zzone =

network =

${file("ssh_pubkey")1}"

—

)

ins_record_set” "foo" {

resource C
_compute_instance, foo.namel}

name = "${googl
type = "A"
ttl = 6@

managed_zone = "${data.google_dns_managed_zone. foo.name}

rrdatas = [

"${google_compute_instance.foo.network_interface.8

access_config.B.assigned_nat

gk

100

PostgreSQL

provider "aws" { region = "us-west-1"

vpc_security_group_ids = ["${aws_security_group.example.id}"]

resource 'aws_db_instance" "example"
name = “"example"
username = "skroob"
password = "12345678"
instance_class = "db.t2.small
allocated_storage = "18"
storage_type = "standard”
engine = "postgres”
skip_final_snapshot = "true"
publicly_accessible = "true"
}
resource aus_security_group” "example”
{
from_port = 5432 to_port = 5432 protocol
cidr_blocks = ["0.8.8.8/8"1
}
}

provider "postgresql” {

database = "postgres”
host = “${aus_db_instance.example.address}"
port = 5432
username = "skroob"
password = "12345678"
}
variable "username" { default = "hunter" }
variable "passuword” { default = "hunter" }

resource "postgresql_database" "db"

name = "mydb"

resource 'postgresgl_role” "user" {

name = "${var.usernamel”
login = true
password = "${var.passuord}”

output "endpoint” { value = "${aus_db_instance example. address}” }

101

And of course, you can mix-and-match.

102

provider "google" {
credentials = "${file("key. json")}"
project = "magrathea-178523"
region = "us-east4"

}

provider "aws" { region = "us-west-1" }

u : w o u
resource google_compute_instance example” {

count = "2"
name = “example${count.index}"
machine_type = "fl-micro"
zone = "us-east4-a"
boot_disk { initialize_params { image = "ubuntu-1784" } }
network_interface { network = "default" access_config (} }
}
data "google_dns_managed_zone" "example" { name = "foamninja" }
resource "google_dns_record_set" "example" {
name = "example.${data.google_dns_managed_zone.example.dns_name}"
type = “A"
ttl = 68
managed_zone = "${data google_dns_managed_zone.example.name}"
rrdatas = ["${google_compute_instance.example.*.network_interface.B.access_config.@.assigned_nat_ip}"]
}
resource "null_resource" "example" {
triggers { dns_record = "${google_dns_record_set.example.id}" }
provisioner "local-exec" { command = "sleep 68" }
}

data “"dns_a_record_set" "example" {

host = "example.foam.ninja"

depends_on = ["null_resource.example”]
}

resource "aws_securitu_group" "example" {
ingress {
from_port = 88 to_port = B8 protocol = "tep"
cidr_blocks = ["${formatlist("%s/32", data.dns_a_record_set.example. addrs)}"]
¥
egress { from_port = 8 to_port = 8 protocol = "-1" cidr_blocks = ["8.8.8.8/8"1

’ 103

Recap: providers, resources & data
sources

gz

Provider
arguments

Providers vary as to authentication.

Creds may be provided inline, via
environment variables, and/or
filesystem paths.

Providers may require regions,
cloud types, and/or projects to be
specified.

105

Resource
arguments and
attributes

Arguments to resources may be
required or optional.

Some arguments can be changed
without re-creating the resource.

An attribute’s value always reflects
its current state. Refresh via plan’

or “apply'.

106

Data sources

Data sources are *read-only*.

Arguments provide filters to restrict
the kind / quantity of results.

Attributes are typically numerous
and contain nested data structure.

107

Gotchas

Gotchal
Module param
mismatch

109

Gotchal
Silent failure on
missing output

110

% tf apply
module.example.aws_eip.example: Creating...

allocation_id; """ =>» "<computed>"
association_id: """ =» "{computed>"
domain;: "' =» "<computed>"
instance: "" =» "{computed>"
netuwork_interface: "" => "<computed>"
private_ip: """ => "{computed>"
public_ip: "' => "computed>"
vpc: """ =» "{computed>"

module.example.aws_eip.example: Creation complete after Bs (ID: eipalloc-6ebc9f53)
aws_security_group.example: Creating...

| | | |
description: "" =» "Managed by Terraform”
egress. #i: "M =» "<computed>"

ingress.t: B T
ingress.”2281976595.cidr_blocks . #: "= "Scomputed>"
] n ingress. 2281976595 .description: S
ingress. 2281976595, from_port: "= g
I I I ISSI n O u u ingress. 2281976595, ipv6_cidr_blocks.#: "" => "B8"
ingress.”2281976595.protocol: D S B
ingress.”2281976595.securitu_groups.#: "" => "B"
ingress.“2281976595.self: "= "false"
ingress.~2281976595, to_port; S T
hELER "M o=» "<computed>"
= ouner_id: => "<computed>"
vpc_id: "M => "{computed>"

aws_security_group.example: Creation complete after 1s (ID:

Apply complete!
% tf output

Resources: 2 added, 8 changed, B destroyed.

sg-fBeBb59e)

111

Gotchal
Useless var
interpolation!

}

}

Use local
variables.

113

Gotcha!
Multiple
accounts

provider "aws’ {

region = Je
}
provider "aws' {
region = i
alias =

profile =

resource {
ami =
type =
associate_public_ip_address = true

resource {
provider =
zone_id =
name =

114

GGotchal
Bizarre errors

GGotcha!
State changed
from under me!

£ tf plan -out=planfile

Gotchal
Destroy Is scary!

Insurance against co-workers?

= true

117

Gotchal
Timeout!

e

[
=]

=

]

118

Gotcha!
Increase
verbosity

TF_LOG=<TRACE, DEBUG,
WARN, INFO, ERROR>

You get to drink from the firehose!

It’s mainly useful for proving you’ve
found a bug.

119

Gotchal
A bug in the
provider!

Use the provider’s "version
argument to pin it.

Providers are in a separate GitHub
organization from Terraform Core:

https://github.com/terraform-providers .

Look at the relevant CHANGELOG.

120

Gotchal
. It’s just JSON. Use ‘jg or your
thtate |S h uge! favcj)rite programminjgc;lang;/uage.

Go install 'jg and rejoice.

121

Gotchal
Dependencies
hurt my brain!

Z tf graph | dot -Tpng > terraform.png

4 tf graph > terraform.graffle

122

[root] provider.aws (close) [root] meta.count-boundary (count boundary fixup) [root] provider.null (close) [root] provisioner.local-exec (close)

aws_security_group.example [root] provider.dns {close) null_resource.example [root] provider.google (close)

data.dns_a_record_set.example google_dns_record_set.example
data.google_dns_managed_zone.example google_compute_instance.example

[ront] meta.count-boundary (count boundary fixup) [root] provider.aws (close)

aws_security_group.example [root] provider.dns {close)

provider.aw data.dns_a_record_sel.example

provider.dn

[root] root

[root] provisioner.local-exec (close)
[root] provider.google (close)

[root] provider.null (close)

null_resource.example

@D— google_dns_record_set.example

data.google_dns_managed_zone.example

google_compute_instance.example

... Getcha?
Golang niceities

Terraform is a single binary.

Download from http://terraform.io .

tf fmt” will apply the standard Go

formatter to canonicalize
style—spacing, quoting, etc.

‘tf validate™ will check for syntax

and dependency graph issues.

125

Q&A

Thank you.

Please fill out your surveys.

